
Analysis of Nonparametric Estimation Methods
for Mutual Information Analysis

Alexandre VENELLI1,2

1 IML - ERISCS Université de la Méditerranée,
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Abstract. Mutual Information Analysis (MIA) is a side-channel attack
introduced recently. It uses mutual information, a known information
theory notion, as a side-channel distinguisher. Most previous attacks use
parametric statistical tests and the attacker assumes that the distribu-
tion family of the targeted side-channel leakage information is known.
On the contrary, MIA is a generic attack that assumes the least possible
about the underlying hardware specifications. For example, an attacker
should not have to guess a linear power model and combine it with a
parametric test, like the Pearson correlation factor. Mutual information
is considered to be very powerful however it is difficult to estimate. Re-
sults of MIA can therefore be unreliable and even bias. Several efficient
parametric estimators of mutual information are proposed in the litera-
ture. They are obviously very efficient when the distribution is correctly
guessed. However, we loose the original goal of MIA which is to assume
the least possible about the attacked devices. Hence, nonparametric esti-
mators of mutual information should be considered in more details and,
in particular, their efficiency in the side-channel context. We review some
of the most powerful nonparametric methods and compare their perfor-
mance with state-of-the-art side-channel distinguishers.

Keywords: Side-channel analysis, mutual information analysis, entropy esti-
mation, nonparametric statistics

1 Introduction

Side-channel analysis is a technique that uses information leaked by a physical
implementation of cryptographic algorithms. The concept of using side-channel
information to break a cryptosystem was introduced by Kocher [12]. In his paper,
Kocher analyses differences in the computation time of certain cryptographic
operations that depend on a secret. On embedded devices, monitoring the power
consumption or recording the electromagnetic radiations is easy to realize and



is very revealing of the computations executed by the system. Statistical tests
are used in side-channel cryptanalysis so that an attacker does not need to
know precise implementation details in order to extract secret keys. Generally,
once the side-channel information is recorded from a device, the attacker post
processes it and evaluates it by some statistical analysis. In 1999, Kocher et
al. [13] introduced the concept of Differential Power Analysis (DPA), a side-
channel attack that uses the difference of means as statistical test. The attacker
makes a key hypothesis and partitions side-channel measurements into two sets
depending on the value of a key-dependent computation in the cryptographic
algorithm. Then, the adversary computes the difference of means of the two sets
for each key hypothesis. If the difference shows distinct peaks, the corresponding
key hypothesis is assumed to be correct.

A lot of research in the side-channel domain consist in proposing relevant
statistical tests to enhance the results of these attacks. In 2004, Brier et al.
[4] introduce the use of the Pearson correlation factor as statistical test. The
corresponding side-channel attack is called Correlation Power Analysis (CPA).
This correlation factor seems to give the best results on the vast majority of
embedded devices. This is mostly due to the technology Complementary Metal
Oxyde Semiconductor (CMOS) that is used in the industry to build smart cards.
It is commonly assumed that the number of bits of a bus or an internal register,
that flip at a given time, is linearly proportional to the current absorption of the
device [17]. This supposition seems correct on most CMOS systems. As the CPA
finds the linear dependencies between power consumption curves and a leakage
function based on a key guess and a plaintext value, it is very powerful.

Making an assumption on the power consumption characteristic details of a
device can be considered a strong hypothesis for an attacker. In 2008, Gierlichs
et al. [8] propose a side-channel attack effective without any knowledge or re-
strictive assumption about the power model of the device, i.e. the relationships
between the power consumption of the device and its processed data. The at-
tack is called Mutual Information Analysis (MIA) and uses mutual information
as a side-channel distinguisher. When the CPA only records linear relations, the
estimation of mutual information does not need to have assumptions about the
dependencies of the variables. Even if the MIA is more generic, in practice the
CPA often performs better on CMOS logic. However for devices using special
types of logic, as the dual-rail logic [10, 5], the assumption that the relation
between processed data and power consumption is linear should not hold.

The poor performance of the MIA compared to the CPA [8, 20, 24, 29] may
not be inherent to its properties but due to its inefficient estimation in most
cases. The MIA, as presented in the original paper [8], uses histograms, the
less effective method to estimate mutual information. Different authors [24, 16]
propose more efficient techniques to estimate mutual information, however the
techniques make assumptions on the power model of the device, i.e. parametric
techniques. In this paper, we focus our analysis on nonparametric methods for
mutual information estimation. We then review and evaluate the efficiency of
each method when applied with MIA. Finally, we compare state-of-the-art side-



channel distinguishers with the most performant nonparametric estimators of
mutual information.

Section 2 summarizes the fundamentals of information theory as well as in-
troduces generalized mutual information. In Section 3, we study some of the
most used statistical tests of the the side-channel literature. Section 4 reviews
classical methods of estimation of mutual information, and more particularly,
nonparametric methods. We evaluate the different techniques of estimation in
the context of side-channel analysis on various setups in Section 5. Section 6
concludes the article.

2 Information Theory Framework

Shannon in [26] laid down foundations of information theory in communication
systems. The entropy in a signal corresponds to the quantity of information
it contains. In the context of cryptanalysis and more particularly side-channel
attacks, one is interested in how much information is generated from a cryp-
tographic device. If the device leaks information when it processes a secret, an
attacker could recover the leakage through side-channel analysis and hence ob-
tain information, e.g. bits of the secret. Mutual information is a measure closely
related to entropy. It is a special case of the notion of relative entropy which
records something close to a distance between two distribution functions.

2.1 Basics on Probability Theory

Let X be a random variable which takes on a finite set of values {x1, x2, . . . , xn}.
Let P(X = xi) be the probability distribution of X. Hence, the function f : x 7→
P(X = x) is often called the probability density function (pdf) of X. Similarly,
we define the function F : x 7→ P(X ≤ x) as the cumulative distribution function
(cdf) of X.

The entropy of X is defined as

H(X) = −
∑
x

f(x) log(f(x)).

Let H(X) and H(Y ) be the entropy of X and Y respectively. The joint entropy
of X and Y is defined as

H(X,Y ) = −
∑
x,y

P(X = x, Y = y) log(P(X = x, Y = y)).

The conditional entropy of X given Y , noted H(X|Y ), is defined as

H(X | Y ) =
∑
y

P(Y = y)H(X | Y = y), with

H(X | Y = y) = −
∑
x

P(X = x, Y = y) log(P(X = x, Y = y)).



The mutual information I(X;Y ) quantifies the amount of information be-
tween two variables X and Y . It is defined as

I(X;Y ) = H(X)−H(X | Y ).

Mutual information is in fact a special case of the Kullback-Leibler (KL)
divergence [15]. This divergence measures the dissimilarity between two distri-
butions. Let f and g be two pdf of a random variable X. The KL divergence,
also called relative entropy, is then defined as

DKL(f ‖ g) =
∑
x

f(x) log
f(x)

g(x)
.

The mutual information can then be described as

I(X;Y ) = DKL(f(x, y) ‖ f(x)f(y)).

2.2 Generalized Mutual Information

Let X be a discrete random variable as previously defined. The Rényi entropy
[25] of order α is defined as

Hα(X) =

{
1

1−α log
∑
x f(x)α for α ≥ 0, α 6= 1

−
∑
x f(x) log f(x) for α = 1.

The entropy of Shannon corresponds to H1(X). With the previous definition
of Rényi entropy, we can introduce the quantity

Iα(X;Y ) = Hα(X) +Hα(Y )−Hα(X,Y ).

The quantity Iα has the following property:

Iα ≥ 0 if and only if α = 0 or 1.

The value Iα only corresponds to the classical definition of mutual information
in these two cases. However in [23, Basic Theorem, Ch. 3], the authors consider
the case α = 2. Using the collision entropy H2, they call the quantity I2(X;Y )
Generalized Mutual Information (GMI) where either the random variable X or
Y is uniformly distributed. In this case, the GMI and the classical mutual infor-
mation are both strictly positive and measure both the independence between
two variables. The GMI is particularly interesting as there is a more efficient
method of estimation based on kernel estimators (Sec. 4.3) [22].

3 Classical Side-Channel Distinguishers

3.1 Differential Side-Channel Model

Let K be a random variable representing a part of the secret. Let X be a ran-
dom variable representing a part of the input, or output, of the cryptographic



algorithm. Suppose an attacker wants to target an intermediate value computed
with the function F that takes as parameters X and K. Let L be a random
variable representing the side-channel leakage generated by the computation of
F (X,K). In practice, the attacker is only able to obtain N realizations of the
random variable L, noted VL = (l1, . . . , lN ), as he inputs N different values of X,
noted VX = (x1, . . . , xN ). Using a distinguisher function D, he combines these
two vectors plus an hypothesis on the value of the secret k′. If the distinguisher
D is relevant and if the leakage vector VL brings enough information on F (X,K),
then the correct value k taken by K can be recovered. In the literature, some
worked on creating a model for F (X,K). For example, taking the Hamming
weight of the output of F [18], the Hamming distance [4] or simply its value [8]
was considered. Other researches were conducted on the distinguisher function
D that plays a fundamental role in the attack. Depending on the choice, the
function is able to extract more or less information from the side-channel leak-
ages. We briefly review in the following the statistical tests used as function D
proposed in the literature.

3.2 Difference of Means

Kocher et al. [13] proposed the concept of differential side-channel attack in
1999. In their original paper, the authors use a Difference of Means (DoM) as
distinguisher function. It is in fact a simplified student T-test, a well-known
statistical test. For simplicity reasons, we suppose the function F (X,K) only
outputs the least significant bit of the result. Let k′ be an hypothesis on the
secret. The attacker can form two sets:

G0 = {L | F (xj , k
′) = 0} and G1 = {L | F (xj , k

′) = 1} .

Finally, he computes the difference of means between the two partitions as:

∆k′ =

∑
l∈G0

l

|G0|
−
∑
l∈G1

l

|G1|
.

If the attacker detects a significant difference between the two sets, he can sup-
pose that the hypothesis k′ is correct.

3.3 Pearson Correlation Factor

Introduced by Brier et al. [4] in the context of side-channel analysis, the Pearson
correlation factor, also called Pearson rho or product-moment correlation, mea-
sures linear dependencies between two variables X and L. The authors called
the attack Correlation Power Analysis (CPA). In practice, if the attacker is only
able to obtain N realizations of the leakage function, then the formula is:

ρk′(X,L) =
N
∑
i liF (xi, k

′)− (
∑
i li
∑
i F (xi, k

′))√
N
∑
i l

2
i − (

∑
i li)

2
√
N
∑
i F (xi, k′)2 − (

∑
i F (xi, k′))

2
.



Pearson correlation calculations are based on the assumption that both X and
L values are sampled from a normal distribution. Hence, Pearson rho is part
of parametric tests. On the contrary, methods that do not assume a particular
distribution family for the data are said to be nonparametric.

3.4 Cluster Analysis

Differential Cluster Analysis (DCA) was introduced in [3]. It uses classical cluster
analysis statistics in the side-channel analysis context. The principle of cluster
analysis is to group similar objects into respective categories, i.e. clusters, and
then use a statistical method in order to discover structures in the observed
data. In side-channel analysis, the clusters often correspond to the outputs of the
attacked intermediate value, which is similar to the mutual information technique
presented Sec. 4. Amongst the statistical function used to characterize clusters
proposed in [3], the use of variance seems particularly suited.

3.5 Nonparametric Correlation Statistics

Nonparametric tests make no assumptions about the distribution parameters
of the variables. They do not rely on the estimation of parameters such as the
mean or the standard deviation. Therefore, they are often called parameter-free
or distribution-free methods. The most commonly used nonparametric equiva-
lents to Pearson correlation factor are Spearman R, Kendall tau and coefficient
Gamma. The coefficient Gamma [9] is similar to Kendall tau and is not very
relevant in our analysis.

The use of the Spearman R has been proposed in [2]. Spearman R assumes
that the variables are on a rank ordered scale. If several values of the variables
are equal, which is the case in the context of side-channel analysis, the formula
for Spearman R is the same as for Pearson’s rho. The rank of identical values is
the mean of their respective ranks.

Kendall tau [11] is similar in terms of results to Spearman R. However, its
computation and its statistical meaning is different. Kendall measures the degree
of relationships between variables whereas Pearson and Spearman test the null
hypothesis that there is no relationships between variables. There is different
versions of Kendall statistic. In our context, one should use the coefficient that
makes adjustments for tied values:

τb =
Nc −Nd√

(N(N − 1)/2− t)(N(N − 1)/2− u)
,

where Nc is the number of pairs ranked in the same order on both variables, Nd
is the number of pairs ranked differently on the variables, t is the number of tied
values in the first variable, u is the number of tied values in the second and N
is the number of observations.

In [29], the authors propose to use other nonparametric statistics: the
Kolmogorov-Smirnov (K-S) test and the Cramér-von Mises (CVM) test. These



tests are very similar to the DCA and the mutual information analysis. Indeed,
the data is placed in different clusters, each typically covering a range of val-
ues of the attacked intermediate value. Let FX(x) and FL(x) be the empirical
cumulative distribution functions of the sample populations X and L. The K-S
test between the variables X and L is:

DKS(X ‖ L) = supx |FX(x)− FL(x)| .

The CVM test is defined similarly as:

DCVM(X ‖ L) =
∑
x

(FX(x)− FL(x))2.

4 Estimators of Mutual Information

Gierlichs et al. in [8] propose the use of mutual information as side-channel dis-
tinguisher in an attack called Mutual Information Analysis (MIA). The authors
present this method as an interesting alternative to the powerful CPA as the
attacker does not have to assume a particular power consumption model for the
targeted device (Sec. 3.1). Indeed, mutual information records both linear and
non-linear relationships between variables while CPA only measures linear ones.
In theory, MIA should be considered more generic as the attacker makes less
assumptions about the device. However in practice, the results of MIA are not
good compared to CPA [29, 24, 20]. In fact, the efficiency of MIA is closely related
to its chosen estimator of mutual information. Some authors studied parametric
estimation methods and their efficiency combined with MIA [24, 7, 16]. On the
contrary, nonparametric estimators are not thoroughly researched [28], although
they fit the original purpose of MIA more suitably.

4.1 Parametric vs Nonparametric Estimation

There are two basic approaches to estimation: parametric and nonparametric.
In this paper, we restrict ourselves to the nonparametric field. Parametric es-
timation makes assumptions about the regression function that describes the
relationship between dependent variables. Therefore, the density function will
assume that the data are from a known family of distributions, such as normal,
and the parameters of the function are then optimized by fitting the model to
the data set. Nonparametric estimation, by contrast, is a statistical method that
has no meaningful associated parameters. There is often no reliable measure
used for the choice of the parameters. However, this type of estimation seems
more suitable to the original purpose of the MIA: a generic side-channel attack
that makes the less assumptions possible. Hence, this paper seeks to introduce
efficient nonparametric pdf estimation methods in the context of side-channel
analysis.



4.2 Histogram-based Estimator

The most simple and time efficient method to estimate pdf is using histograms.
An histogram consists in a partition of the range of values of each variables into
b discrete bins of equal length. The pdf of each bin is estimated by the relative
frequency of occurrence of samples in the bin. Let X be a random variable with
N realizations. The b partitions are defined as: ai = [o+ ih, o+ (i+ 1)h] where
o the value of the origin, h is the width of the bins and i = 0, . . . , b − 1. Let ki
be the number the measurements of X that lie in the interval ai. The pdf fi of
X can be approximated as

f̂i =
ki
N
.

As this method is nonparametric, its parameters are not easily determined.
The choice of the number of bins b or their width can be non-trivial. In any case,
the partitioning must be the same for both variables. Even if Histogram-based
Estimation (HE) is computationally efficient, its results contain more statistical
errors than other methods.

4.3 Kernel Estimator

Kernel Density Estimation (KDE) constructs a smooth estimate of the density by
centering kernel functions at data samples [19]. The kernels weight the distance
of each points in the sample to the reference point depending on the form of
the kernel function and according to a given bandwidth h. In KDE, h plays a
similar role as b in HE. In fact, the uniform kernel function forms an histogram.
Gaussian kernels are most commonly used and we use them as well in this study.
Let {x1, . . . , nN} be N realizations of the random variable X. The pdf estimate
using a Gaussian kernel is given by:

f̂(x) =
1

N

1

h
√

2π

N∑
i=1

exp

(
− (x− xi)2

2h2

)
.

This estimation method is quite costly in computational time. Kernel esti-
mators are considered to be very good for density estimation of one-dimensional
data however it is not always the case for mutual information estimation.

4.4 k-Nearest Neighbor Estimator

Kraskov et al. [14] present a new estimator based on distances of k-Nearest
Neighbors (KNN) to estimate densities. The authors consider a bivariate sample
and, for each reference point, a distance length is computed so that k neighbors
are within this distance length noted ε(i) for a reference point i. The number of
points with distance ε(i)/2 gives the estimate of the joint density at the point
i. The distance is then projected into each variable subspace to estimate the
marginal density of each variable. The estimation of MI using KNN depends on



the choice of k. In [14] the authors explain that statistical errors increase when k
decreases. In practice, we should use k > 1, however if k is too large, systematic
errors can outweigh the decrease of statistical errors. KNN gives good results
with less statistical errors than previous methods but with a computationally
heavy algorithm [21].

4.5 B-Spline Estimator

In [6] Daub et al. introduce the use of B-spline functions as entropy estimators.
A B-spline curve is a generalized Bézier curve. It is specified by the parameters:

– the degree d, or order k = d + 1, so that each segment of the piecewise
polynomial curve has degree d or less,

– a sequence of m + 1 numbers, t0, . . . , tm, called knot vector, such that ti ≤
ti+1,∀i ∈ {1, . . . ,m− 1},

– control points, b0, . . . , bn.

A B-spline curve is defined in terms of B-spline basis functions. The i-th basis
function of degree d, noted Bi,d, defined by the knot vector t0, . . . , tm is defined
by the Cox-de Boor recursion formula as follows:

Bi,0(z) =

{
1 if ti ≤ z < ti+1

0 otherwise.

Bi,d(z) =
z − ti
ti+d − ti

Bi,d−1(z) +
ti+d+1 − z
ti+d+1 − ti+1

Bi+1,d−1(z),

for i = 0, . . . , n and d ≥ 1. Finally, the property:

n∑
i=0

Bi,d(z) = 1,

for any value of z, makes B-spline basis functions suitable as a pdf estimator.
This estimator is noted BSE. More details on the use and advantages of BSE in
the side-channel context are available in [28].

5 Experimental Analysis

We analyze in this section the practical efficiency of nonparametric estimators
of mutual information in the context of side-channel attacks. We compare their
performances with state-of-the-art proposed side-channel distinguishers:

– classical parametric test, CPA (Sec. 3.3),
– nonparametric tests, SPE (Sec. 3.5), CVM (Sec. 3.5),
– cluster analysis, DCA with variance as criterion function (Sec. 3.4),
– mutual information with parametric estimation, Cumulant-based Estimator

(CE) [16] which is the most powerful parametric estimator,



– mutual information with nonparametric estimation, GMIA (Sec. 2.2), HE
(Sec. 4.2), KDE (Sec. 4.3), KNN (Sec. 4.4), BSE (Sec. 4.5).

In order to compare the efficiency of side-channel attacks, we use common
metrics proposed in the literature [27]. Guessed Entropy (GE) is the average
position of the correct key hypothesis in the sorted vector of hypothesis at the
end of the attack. Results using another metric are presented in Appendix A.

Attacks are performed on two different setups: the publicly available power
curves of DPA Contest 2008/2009 [30] of a DES implementation and curves
acquired on an Atmel STK600 board with an Atmel AVR ATmega2561 [1] of a
multi-precision multiplication algorithm.

On DPA Contest 2008/2009 curves of a DES, the intermediate value tar-
geted is the output the SBox in the last round. For the attacks using mutual
information with nonparametric estimation, we consider no power model, i.e.
the value of the data. The Hamming weight model is used for the other attacks.
Each attack is performed on 135 sets of 600 power curves in order to average
the results. We evaluate each distinguishers and present the results in Fig. 1.
Attacks can be assigned to different groups depending on their efficiency. The
best seems to be CE, CPA and SPE which are all parametric tests. The fol-
lowing attacks are KDE, DCA and CVM amongst which are the first mutual
information nonparametric ones. The BSE is next, followed by KNN, GMIA and
HE.
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Fig. 1: Guessed entropy results on DPA Contest 2008/2009 curves of a DES.



The same attacks are also performed on curves acquired on a STK600 devel-
opment board with a 8-bit Atmel AVR ATmega2561. This setup is not particu-
larly well suited to perform side-channel attacks. Therefore the power traces con-
tains significantly more noise than the DPA Contest ones. We attack a column-
wise multi-precision multiplication algorithm implemented in software. The tar-
geted values are the intermediate 8-bit multiplications xi×yj considering one of
the multiplicand known by the attacker. As with the previous setup, we do not
consider a power model for the attacks using mutual information with nonpara-
metric estimation. The other attacks assume the Hamming weight model. Each
attack is performed on 20 sets of 2000 power curves. We obtain a slightly differ-
ent performance from several attacks (Fig. 2). As previously, the most powerful
attacks are still CE, CPA and SPE. However BSE seems to perform much better
and is at the same level as CVM, DCA and KDE. The estimators BSE and KDE
are the most efficient nonparametric methods but BSE is more computationally
efficient than KDE, hence an more interesting choice.
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Fig. 2: Guessed entropy results on STK600 curves of a multi-precision multipli-
cation.

With this overall comparison of state-of-the-art side-channel distinguishers,
we can note differences between classical statistical tests performance and their
efficiency in the side-channel context. For example, the KNN estimator should
be less subject to statistical errors than BSE or KDE. However it performs



worse in this scenario. Classical parametric tests are still amongst the most
powerful in most cases. In particular the recently presented Cumulant-based
Estimator [16], a parametric estimator of mutual information, is very interesting.
These experimental analysis also show the gain obtained when using efficient
nonparametric estimators of mutual information. Even if the MIA attack is not
the most powerful, its performance is greatly improved compared to the classical
histogram estimator that has been used in the literature as a reference.

6 Conclusion

In this paper, we review some of the most statistically powerful nonparametric
estimators of mutual information in the context of side-channel analysis. The
distinction between parametric and nonparametric methods is important and
should be clearly made when comparing side-channel distinguishers efficiency.
Depending on the supposed knowledge of the adversary, one of these two classes
of attacks needs to be considered. We also note that, in terms of performance,
nonparametric estimation in MIA is not as bad as previously thought. The KDE
and BSE estimators perform quite well for an acceptable computational overhead
in the case of BSE. Even if the study is done on CMOS devices, we can expect
a similar improvement of performance on different types of logic when using
efficient nonparametric methods.
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A First-order Success Rate Results

We present here the results of the success rate metric on the two platforms
detailed in Sec. 5. First-order success rate is, for a given number of curves,
the probability that the correct key hypothesis is ranked first in the sorted
vector of hypothesis. These results are consistent with the guessed entropy metric
presented in Sec. 5.
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Fig. 3: First-order success rate on DPA Contest 2008/2009 curves of a DES.
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Fig. 4: First-order success rate results on STK600 curves of a multi-precision
multiplication.


